A Stochastic Large-scale Machine Learning Algorithm for Distributed Features and Observations

نویسندگان

  • Biyi Fang
  • Diego Klabjan
چکیده

As the size of modern datasets exceeds the disk and memory capacities of a single computer, machine learning practitioners have resorted to parallel and distributed computing. Given that optimization is one of the pillars of machine learning and predictive modeling, distributed optimization methods have recently garnered ample attention, in particular when either observations or features are distributed, but not both. We propose a general stochastic algorithm where observations, features, and gradient components can be sampled in a double distributed setting, i.e., with both features and observations distributed. Very technical analyses establish convergence properties of the algorithm under different conditions on the learning rate (diminishing to zero or constant). Computational experiments in Spark demonstrate a superior performance of our algorithm versus a benchmark in early iterations of the algorithm, which is due to the stochastic components of the algorithm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two-stage fuzzy-stochastic programming for parallel machine scheduling problem with machine deterioration and operator learning effect

This paper deals with the determination of machine numbers and production schedules in manufacturing environments. In this line, a two-stage fuzzy stochastic programming model is discussed with fuzzy processing times where both deterioration and learning effects are evaluated simultaneously. The first stage focuses on the type and number of machines in order to minimize the total costs associat...

متن کامل

Optimization for Large-Scale Machine Learning with Distributed Features and Observations

As the size of modern data sets exceeds the disk and memory capacities of a single computer, machine learning practitioners have resorted to parallel and distributed computing. Given that optimization is one of the pillars of machine learning and predictive modeling, distributed optimization methods have recently garnered ample attention in the literature. Although previous research has mostly ...

متن کامل

Large Scale Distributed Distance Metric Learning

In large scale machine learning and data mining problems with high feature dimensionality, the Euclidean distance between data points can be uninformative, and Distance Metric Learning (DML) is often desired to learn a proper similarity measure (using side information such as example data pairs being similar or dissimilar). However, high dimensionality and large volume of pairwise constraints i...

متن کامل

A New Play-off Approach in League Championship Algorithm for Solving Large-Scale Support Vector Machine Problems

There are many numerous methods for solving large-scale problems in which some of them are very flexible and efficient in both linear and non-linear cases. League championship algorithm is such algorithm which may be used in the mentioned problems. In the current paper, a new play-off approach will be adapted on league championship algorithm for solving large-scale problems. The proposed algori...

متن کامل

Joint Feature Selection in Distributed Stochastic Learning for Large-Scale Discriminative Training in SMT

With a few exceptions, discriminative training in statistical machine translation (SMT) has been content with tuning weights for large feature sets on small development data. Evidence from machine learning indicates that increasing the training sample size results in better prediction. The goal of this paper is to show that this common wisdom can also be brought to bear upon SMT. We deploy loca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018